Schaeffler Develops Next
HomeHome > Blog > Schaeffler Develops Next

Schaeffler Develops Next

Jun 17, 2023

Schaeffler is demonstrating its development capabilities in the field of hydrogen-powered mobility with a new generation of metallic bipolar plates for PEM fuel cells. All fuel cell systems rely on bipolar plates, but Schaeffler said its plates feature a new design optimized for large-series production and leverage a coating process for long fuel cell life. The company said stacks made using the its plates achieve a power density about 20 percent greater than that of stacks made using previous-generation plates.

At a purpose-built pilot production facility in Herzogenaurach, Germany, the company is now manufacturing the new plates in runs of up to several tens of thousands of units for use by international vehicle manufacturers in prototype and small-series production. The fully automated facility is part of Schaeffler’s center of excellence for hydrogen, a complex that also includes an extensive array of testing equipment. The facility has been designed so that it can also be used to manufacture large plates of the type used for electrolyzers. Schaeffler is thus ensuring both sustainable motion and the sustainable supply of green hydrogen, the company said. Schaeffler is also able to partner with customers to develop customized bipolar plates and components for fuel cell systems.

The company is due to start production of bipolar plates under the name of Innoplate, a joint venture with Symbio, in Haguenau, France, at the start of 2024.

Bipolar plates are only about the size of a DIN A4 envelope and weighing just 60 grams, but they are core components of fuel cells, Schaeffler said. They perform a number of vital functions, including providing channels both for the separation and distribution of the process gasses and coolant and for the removal of the water resulting from the chemical reaction.

“Schaeffler has developed an innovative design that makes optimal use of the plate’s surface area,” explained Dr. Jochen Schröder, Schaeffler’s head of E-Mobility. “The finer and more precise the structures on the bipolar plate, the more efficient the plate is.”

Schaeffler’s new plates enable a fuel cell stack power density of 4.6 kW per liter of fuel cell volume (including end plates and compression hardware). For vehicle applications, several hundred of these plates are layered on top of one another, each separated by a membrane electrode assembly (MEA), to form a stack. The plates account for up to 80 percent of the stack’s weight, and up to 65 percent of its volume. Stacks comprising up to 400 of these cell units have a total power output of up to 140 kW – enough for light commercial vehicles.

Schaeffler’s new generation of bipolar plates is also designed from the ground up for industrialization at large scale – an approach known as design for manufacturing (DFM). The aim is to achieve a level of cost-effectiveness and scalability of manufacturing sufficient for hydrogen-powered mobility to reach market breakthrough. In terms of production, the company is leveraging its years of experience and expertise in metal stamping and forming, and has achieved the high level of precision needed to stamp the necessary ultrafine structures on the surface of the plates, which have a thickness of only 50 to 100 micrometers, the company stated.

Another feature of the metallic bipolar plates made by Schaeffler is the coating system, which maintains a high level of electrical conductivity over the fuel cell’s entire service life, the company said. Schaeffler’s solution is “Enertect” – a family of high-performance coating systems developed specifically for bipolar plates. Depending on the customer’s requirements, the coatings can be engineered for maximum plate service life, minimum carbon footprint or an optimized price-performance ratio.

“Thanks to our capabilities in surface technology, we are able to offer each customer an application-specific coating solution. This means we can meet each customer’s requirements in terms of balancing cost, performance, and manufacturing-related CO2 emissions,” Schröder said.

The coatings are applied using a specially adapted and fine-tuned version of the physical vapor deposition (PVD) process that Schaeffler has used successfully in the production of millions of highly stressed valve train components over the years. To make fuel cells gas- and watertight – vital from a quality and safety perspective – Schaeffler uses either injection-molded or silk screen gaskets, or, depending on requirements, a special laser welding process developed in-house, according to the company.